ZETA

REDUC
E

INDEX

ZETA _ _ _ _ _ _ _ _ _ _ _ _ operator

The Zeta operator returns Riemann's Zeta function,

Zeta (z) := sum(1/(k**z),k,1,infinity)

syntax:

Zeta(<expression>)

examples:


Zeta(2); 

    2
  pi  / 6 


on rounded; 

Zeta 1.01; 

  100.577943338

Numerical computation for the Zeta function for arguments close to 1 are tedious, because the series is converging very slowly. In this case a formula (e.g. found in Bender/Orzag: Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill) is used.

No numerical approximation for complex arguments is done.

Bernoulli Euler Zeta

REDUC
E

INDEX

Bernoulli Euler Zeta

  • BERNOULLI operator

  • BERNOULLIP operator

  • EULER operator

  • EULERP operator

  • ZETA operator

  • BESSELJ

    REDUC
E

    INDEX

    BESSELJ _ _ _ _ _ _ _ _ _ _ _ _ operator

    The BesselJ operator returns the Bessel function of the first kind.

    syntax:

    BesselJ(<order>,<argument>)

    examples:

    
    BesselJ(1/2,pi); 
    
      0 
    
    
    on rounded; 
    
    BesselJ(0,1); 
    
      0.765197686558  
    
    

    BESSELY

    REDUC
E

    INDEX

    BESSELY _ _ _ _ _ _ _ _ _ _ _ _ operator

    The BesselY operator returns the Bessel function of the second kind.

    syntax:

    BesselY(<order>,<argument>)

    examples:

    
    BesselY (1/2,pi); 
    
      - sqrt(2) / pi 
    
    
    on rounded; 
    
    BesselY (1,3); 
    
      0.324674424792
    
    

    The operator BesselY is also called Weber's function.

    HANKEL1

    REDUC
E

    INDEX

    HANKEL1 _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Hankel1 operator returns the Hankel function of the first kind.

    syntax:

    Hankel1(<order>,<argument>)

    examples:

    
    on complex; 
    
    Hankel1 (1/2,pi); 
    
      - i * sqrt(2) / pi 
    
    
    Hankel1 (1,pi); 
    
      besselj(1,pi) + i*bessely(1,pi)
    
    

    The operator Hankel1 is also called Bessel function of th e third kind. There is currently no numeric evaluation of Hankel functions.

    HANKEL2

    REDUC
E

    INDEX

    HANKEL2 _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Hankel2 operator returns the Hankel function of the second kind.

    syntax:

    Hankel2(<order>,<argument>)

    examples:

    
    on complex; 
    
    Hankel2 (1/2,pi); 
    
      - i * sqrt(2) / pi 
    
    
    Hankel2 (1,pi); 
    
      besselj(1,pi) - i*bessely(1,pi)
    
    

    The operator Hankel2 is also called Bessel function of th e third kind. There is currently no numeric evaluation of Hankel functions.

    BESSELI

    REDUC
E

    INDEX

    BESSELI _ _ _ _ _ _ _ _ _ _ _ _ operator

    The BesselI operator returns the modified Bessel function I.

    syntax:

    BesselI(<order>,<argument>)

    examples:

    
    on rounded; 
    
    Besseli (1,1); 
    
      0.565159103992
    
    

    The knowledge about the operator BesselI is currently fai rly limited.

    BESSELK

    REDUC
E

    INDEX

    BESSELK _ _ _ _ _ _ _ _ _ _ _ _ operator

    The BesselK operator returns the modified Bessel function K.

    syntax:

    BesselK(<order>,<argument>)

    examples:

    
    df(besselk(0,x),x); 
    
      - besselk(1,x)
    
    

    There is currently no numeric support for the operator BesselK .

    StruveH

    REDUC
E

    INDEX

    STRUVEH _ _ _ _ _ _ _ _ _ _ _ _ operator

    The StruveH operator returns Struve's H function.

    syntax:

    StruveH(<order>,<argument>)

    examples:

    
    struveh(-3/2,x); 
    
      - besselj(3/2,x) / i
    
    

    StruveL

    REDUC
E

    INDEX

    STRUVEL _ _ _ _ _ _ _ _ _ _ _ _ operator

    The StruveL operator returns the modified Struve L function .

    syntax:

    StruveL(<order>,<argument>)

    examples:

    
    struvel(-3/2,x); 
    
      besseli(3/2,x)
    
    

    KummerM

    REDUC
E

    INDEX

    KUMMERM _ _ _ _ _ _ _ _ _ _ _ _ operator

    The KummerM operator returns Kummer's M function.

    syntax:

    KummerM(<parameter>,<parameter>,<argument>)

    examples:

    
    kummerm(1,1,x); 
    
       x
      e  
    
    
    on rounded; 
    
    kummerm(1,3,1.3); 
    
      1.62046942914
    
    

    Kummer's M function is one of the Confluent Hypergeometric functio ns. For reference see the hypergeometric operator.

    KummerU

    REDUC
E

    INDEX

    KUMMERU _ _ _ _ _ _ _ _ _ _ _ _ operator

    The KummerU operator returns Kummer's U function.

    syntax:

    KummerU(<parameter>,<parameter>,<argument>)

    examples:

    
    df(kummeru(1,1,x),x) 
    
      - kummeru(2,2,x)
    
    

    Kummer's U function is one of the Confluent Hypergeometric functio ns. For reference see the hypergeometric operator.

    WhittakerW

    REDUC
E

    INDEX

    WHITTAKERW _ _ _ _ _ _ _ _ _ _ _ _ operator

    The WhittakerW operator returns Whittaker's W function.

    syntax:

    WhittakerW(<parameter>,<parameter>,<argument>)

    examples:

    
    WhittakerW(2,2,2); 
    
                        1
      4*sqrt(2)*kummeru(-,5,2)
                        2
      -------------------------
                 e
    
    

    Whittaker's W function is one of the Confluent Hypergeometric func tions. For reference see the hypergeometric operator.

    Bessel Functions

    REDUC
E

    INDEX

    Bessel Functions

  • BESSELJ operator

  • BESSELY operator

  • HANKEL1 operator

  • HANKEL2 operator

  • BESSELI operator

  • BESSELK operator

  • StruveH operator

  • StruveL operator

  • KummerM operator

  • KummerU operator

  • WhittakerW operator

  • Airy_Ai

    REDUC
E

    INDEX

    AIRY_AI _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Airy_Ai operator returns the Airy Ai function for a given argument.

    syntax:

    Airy_Ai(<argument>)

    examples:

    
    on complex;
    on rounded;
    Airy_Ai(0); 
    
    
      0.355028053888          
    
    
    Airy_Ai(3.45 + 17.97i); 
    
      - 5.5561528511e+9 - 8.80397899932e+9*i  
    
    

    Airy_Bi

    REDUC
E

    INDEX

    AIRY_BI _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Airy_Bi operator returns the Airy Bi function for a given argument.

    syntax:

    Airy_Bi(<argument>)

    examples:

    
    Airy_Bi(0); 
    
      0.614926627446          
    
    
    Airy_Bi(3.45 + 17.97i); 
    
      8.80397899932e+9 - 5.5561528511e+9*i   
    
    

    Airy_Aiprime

    REDUC
E

    INDEX

    AIRY_AIPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Airy_Aiprime operator returns the Airy Aiprime function for a given argument.

    syntax:

    Airy_Aiprime(<argument>)

    examples:

    
    Airy_Aiprime(0); 
    
      - 0.258819403793           
    
    
    Airy_Aiprime(3.45+17.97i);
    
      - 3.83386421824e+19 + 2.16608828136e+19*i 
    
    

    Airy_Biprime

    REDUC
E

    INDEX

    AIRY_BIPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Airy_Biprime operator returns the Airy Biprime function for a given argument.

    syntax:

    Airy_Biprime(<argument>)

    examples:

    
    Airy_Biprime(0); 
    
    
    Airy_Biprime(3.45 + 17.97i); 
    
      3.84251916792e+19 - 2.18006297399e+19*i
    
    

    Airy Functions

    REDUC
E

    INDEX

    Airy Functions

  • Airy_Ai operator

  • Airy_Bi operator

  • Airy_Aiprime operator

  • Airy_Biprime operator

  • JacobiSN

    REDUC
E

    INDEX

    JACOBISN _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobisn operator returns the Jacobi Elliptic function sn.

    syntax:

    Jacobisn(<expression>,<integer>)

    examples:

    
    Jacobisn(0.672, 0.36) 
    
      0.609519691792 
    
    
    Jacobisn(1,0.9) 
    
      0.770085724907881 
    
    

    JacobiCN

    REDUC
E

    INDEX

    JACOBICN _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobicn operator returns the Jacobi Elliptic function cn.

    syntax:

    Jacobicn(<expression>,<integer>)

    examples:

    
    Jacobicn(7.2, 0.6) 
    
      0.837288298482018  
    
    
    Jacobicn(0.11, 19) 
    
      0.994403862690043 - 1.6219006985556e-16*i  
    
    

    JacobiDN

    REDUC
E

    INDEX

    JACOBIDN _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobidn operator returns the Jacobi Elliptic function dn.

    syntax:

    Jacobidn(<expression>,<integer>)

    examples:

    
    Jacobidn(15, 0.683) 
    
      0.640574162024592 
    
    
    Jacobidn(0,0) 
    
      1 
    
    

    JacobiCD

    REDUC
E

    INDEX

    JACOBICD _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobicd operator returns the Jacobi Elliptic function cd.

    syntax:

    Jacobicd(<expression>,<integer>)

    examples:

    
    Jacobicd(1, 0.34) 
    
      0.657683337805273 
    
    
    Jacobicd(0.8,0.8) 
    
      0.925587311582301 
    
    

    JacobiSD

    REDUC
E

    INDEX

    JACOBISD _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobisd operator returns the Jacobi Elliptic function sd.

    syntax:

    Jacobisd(<expression>,<integer>)

    examples:

    
    Jacobisd(12, 0.4) 
    
      0.357189729437272    
    
    
    Jacobisd(0.35,1) 
    
      - 1.17713873203043  
    
    

    JacobiND

    REDUC
E

    INDEX

    JACOBIND _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobind operator returns the Jacobi Elliptic function nd.

    syntax:

    Jacobind(<expression>,<integer>)

    examples:

    
    Jacobind(0.2, 17) 
    
      1.46553203037507 + 0.0000000000334032759313703*i 
    
    
    Jacobind(30, 0.001) 
    
      1.00048958438  
    
    

    JacobiDC

    REDUC
E

    INDEX

    JACOBIDC _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobidc operator returns the Jacobi Elliptic function dc.

    syntax:

    Jacobidc(<expression>,<integer>)

    examples:

    
    Jacobidc(0.003,1) 
    
      1 
    
    
    Jacobidc(2, 0.75) 
    
      6.43472885111  
    
    

    JacobiNC

    REDUC
E

    INDEX

    JACOBINC _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobinc operator returns the Jacobi Elliptic function nc.

    syntax:

    Jacobinc(<expression>,<integer>)

    examples:

    
    Jacobinc(1,0) 
    
      1.85081571768093 
    
    
    Jacobinc(56, 0.4387) 
    
      39.304842663512  
    
    

    JacobiSC

    REDUC
E

    INDEX

    JACOBISC _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobisc operator returns the Jacobi Elliptic function sc.

    syntax:

    Jacobisc(<expression>,<integer>)

    examples:

    
    Jacobisc(9, 0.88) 
    
      - 1.16417697982095  
    
    
    Jacobisc(0.34, 7) 
    
      0.305851938390775 - 9.8768100944891e-12*i 
    
    

    JacobiNS

    REDUC
E

    INDEX

    JACOBINS _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobins operator returns the Jacobi Elliptic function ns.

    syntax:

    Jacobins(<expression>,<integer>)

    examples:

    
    Jacobins(3, 0.9) 
    
      1.00945801599785 
    
    
    Jacobins(0.887, 15) 
    
      0.683578280513975 - 0.85023411082469*i 
    
    

    JacobiDS

    REDUC
E

    INDEX

    JACOBIDS _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobisn operator returns the Jacobi Elliptic function ds.

    syntax:

    Jacobids(<expression>,<integer>)

    examples:

    
    Jacobids(98,0.223) 
    
      - 1.061253961477 
    
    
    Jacobids(0.36,0.6) 
    
      2.76693172243692 
    
    

    JacobiCS

    REDUC
E

    INDEX

    JACOBICS _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Jacobics operator returns the Jacobi Elliptic function cs.

    syntax:

    Jacobics(<expression>,<integer>)

    examples:

    
    Jacobics(0, 0.767) 
    
      infinity   
    
    
    Jacobics(1.43, 0) 
    
      0.141734127352112 
    
    

    JacobiAMPLITUDE

    REDUC
E

    INDEX

    JACOBIAMPLITUDE _ _ _ _ _ _ _ _ _ _ _ _ operator

    The JacobiAmplitude operator returns the amplitude of u.

    syntax:

    JacobiAmplitude(<expression>,<integer>)

    examples:

    
    JacobiAmplitude(7.239, 0.427) 
    
      0.0520978301448978 
    
    
    JacobiAmplitude(0,0.1) 
    
      0 
    
    

    Amplitude u = asin(Jacobisn(u,m))

    AGM_FUNCTION

    REDUC
E

    INDEX

    AGM_FUNCTION _ _ _ _ _ _ _ _ _ _ _ _ operator

    The AGM_function operator returns a list of (N, AGM, list of aNtoa0, list of bNtob0, list of cNtoc0) where a0, b0 and c0 are the initial values; N is the index number of the last term used to generate the AGM. AGM is the Arithmetic Geometric Mean.

    syntax:

    AGM_function(<integer>,<integer>,<integer>)

    examples:

    
    AGM_function(1,1,1) 
    
      1,1,1,1,1,1,0,1  
    
    
    AGM_function(1, 0.1, 1.3) 
    
      {6,
       2.27985615996629, 
       {2.27985615996629, 2.27985615996629,
        2.2798561599706, 2.2798624278857, 
        2.28742283656583, 2.55, 1},
       {2.27985615996629, 2.27985615996629,
        2.27985615996198, 2.2798498920555, 
        2.27230201920557, 2.02484567313166, 4.1},
       {0, 4.30803136219904e-12, 0.0000062679151007581,
        0.00756040868012758, 0.262577163434171, - 1.55, 5.9}}
    
    

    The other Jacobi functions use this function with initial values a0=1, b0=sqrt(1-m), c0=sqrt(m).

    LANDENTRANS

    REDUC
E

    INDEX

    LANDENTRANS _ _ _ _ _ _ _ _ _ _ _ _ operator

    The landentrans operator generates the descending landen transformation of the given imput values, returning a list of these values; initial to final in each case.

    syntax:

    landentrans(<expression>,<integer>)

    examples:

    
    landentrans(0,0.1) 
    
      {{0,0,0,0,0},{0.1,0.0025041751943776, 
    
    
     
    
      0.00000156772498954046,6.1444078 9914461e-13,0}}  
    
    

    The first list ascends in value, and the second descends in value.

    EllipticF

    REDUC
E

    INDEX

    ELLIPTICF _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticF operator returns the Elliptic Integral of the First Kind.

    syntax:

    EllitpicF(<expression>,<integer>)

    examples:

    
    EllipticF(0.3, 8.222) 
    
      0.3 
    
    
    EllipticF(7.396, 0.1) 
    
      7.58123216114307 
    
    

    The Complete Elliptic Integral of the First Kind can be found by putting the first argument to pi/2 or by using EllipticK and the second argument.

    EllipticK

    REDUC
E

    INDEX

    ELLIPTICK _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticK operator returns the Elliptic value K.

    syntax:

    EllipticK(<integer>)

    examples:

    
    EllipticK(0.2) 
    
      1.65962359861053   
    
    
    EllipticK(4.3) 
    
      0.808442364282734 - 1.05562492399206*i  
    
    
    EllipticK(0.000481) 
    
      1.57098526617635    
    
    

    The EllipticK function is the Complete Elliptic Integral of the First Kind.

    EllipticKprime

    REDUC
E

    INDEX

    ELLIPTICKPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticK' operator returns the Elliptic value K(m).

    syntax:

    EllipticKprime(<integer>)

    examples:

    
    EllipticKprime(0.2) 
    
      2.25720532682085 
    
    
    EllipticKprime(4.3) 
    
      1.05562492399206 
    
    
    EllipticKprime(0.000481) 
    
      5.206621921966   
    
    

    The EllipticKprime function is the Complete Elliptic Inte gral of the First Kind of (1-m).

    EllipticE

    REDUC
E

    INDEX

    ELLIPTICE _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticE operator used with two arguments returns the Elliptic Integral of the Second Kind.

    syntax:

    EllipticE(<expression>,<integer>)

    examples:

    
    EllipticE(1.2,0.22) 
    
      1.15094019180949 
    
    
    EllipticE(0,4.35) 
    
      0                
    
    
    EllipticE(9,0.00719) 
    
      8.98312465929145  
    
    

    The Complete Elliptic Integral of the Second Kind can be obtained by using just the second argument, or by using pi/2 as the first argument.

    The EllipticE operator used with one argument returns the Elliptic value E.

    syntax:

    EllipticE(<integer>)

    examples:

    
    EllipticE(0.22) 
    
      1.48046637439519  
    
    
    EllipticE(pi/2, 0.22) 
    
      1.48046637439519  
    
    

    EllipticTHETA

    REDUC
E

    INDEX

    ELLIPTICTHETA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The EllipticTheta operator returns one of the four Theta functions. It cannot except any number other than 1,2,3 or 4 as its first argument.

    syntax:

    EllipticTheta(<integer>,<expression>,<integer>)

    examples:

    
    EllipticTheta(1, 1.4, 0.72) 
    
      0.91634775373  
    
    
    EllipticTheta(2, 3.9, 6.1 ) 
    
      -48.0202736969 + 20.9881034377 i 
    
    
    EllipticTheta(3, 0.67, 0.2) 
    
      1.0083077448   
    
    
    EllipticTheta(4, 8, 0.75) 
    
      0.894963369304 
    
    
    EllipticTheta(5, 1, 0.1) 
    
      ***** In EllipticTheta(a,u,m); a = 1,2,3 or 4.   
    
    

    Theta functions are important because every one of the Jacobian Elliptic functions can be expressed as the ratio of two theta functions.

    JacobiZETA

    REDUC
E

    INDEX

    JACOBIZETA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The JacobiZeta operator returns the Jacobian function Zeta.

    syntax:

    JacobiZeta(<expression>,<integer>)

    examples:

    
    JacobiZeta(3.2, 0.8) 
    
      - 0.254536403439 
    
    
    JacobiZeta(0.2, 1.6) 
    
      0.171766095970451 - 0.0717028569800147*i  
    
    

    The Jacobian function Zeta is related to the Jacobian function The ta. But it is significantly different from Riemann's Zeta Function Zeta.

    Jacobi's Elliptic Functions and Elliptic Integrals

    REDUC
E

    INDEX

    Jacobi's Elliptic Functions and Elliptic Integrals

  • JacobiSN operator

  • JacobiCN operator

  • JacobiDN operator

  • JacobiCD operator

  • JacobiSD operator

  • JacobiND operator

  • JacobiDC operator

  • JacobiNC operator

  • JacobiSC operator

  • JacobiNS operator

  • JacobiDS operator

  • JacobiCS operator

  • JacobiAMPLITUDE operator

  • AGM_FUNCTION operator

  • LANDENTRANS operator

  • EllipticF operator

  • EllipticK operator

  • EllipticKprime operator

  • EllipticE operator

  • EllipticTHETA operator

  • JacobiZETA operator

  • POCHHAMMER

    REDUC
E

    INDEX

    POCHHAMMER _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Pochhammer operator implements the Pochhammer notation (shifted factorial).

    syntax:

    Pochhammer(<expression>,<expression>)

    examples:

    
    pochhammer(17,4); 
    
      116280 
    
    
    
    pochhammer(1/2,z); 
    
        factorial(2*z)
      --------------------
        2*z
      (2   *factorial(z))
    
    

    A number of complex rules for Pochhammer are inactive, be cause they cause a huge system load in algebraic mode. If one wants to use more rules for the simplification of Pochhammer's notation, one can do:

    let special!*pochhammer!*rules;

    GAMMA

    REDUC
E

    INDEX

    GAMMA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Gamma operator returns the Gamma function.

    syntax:

    Gamma(<expression>)

    examples:

    
    gamma(10); 
    
      362880    
    
    
    gamma(1/2); 
    
      sqrt(pi)
    
    

    BETA

    REDUC
E

    INDEX

    BETA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Beta operator returns the Beta function defined by

    Beta (z,w) := defint(t**(z-1)* (1 - t)**(w-1),t,0,1) .

    syntax:

    Beta(<expression>,<expression>)

    examples:

    
    Beta(2,2); 
    
      1 / 6 
    
    
    Beta(x,y); 
    
      gamma(x)*gamma(y) / gamma(x + y)
    
    

    The operator Beta is simplified towards the GAMMA operator.

    PSI

    REDUC
E

    INDEX

    PSI _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Psi operator returns the Psi (or DiGamma) function.

    Psi(x) := df(Gamma(z),z)/ Gamma (z)

    syntax:

    Gamma(<expression>)

    examples:

    
    Psi(3); 
    
      (2*log(2) + psi(1/2) + psi(1) + 3)/2 
    
    
    on rounded; 
    
    - Psi(1); 
    
      0.577215664902
    
    

    Euler's constant can be found as - Psi(1).

    POLYGAMMA

    REDUC
E

    INDEX

    POLYGAMMA _ _ _ _ _ _ _ _ _ _ _ _ operator

    The Polygamma operator returns the Polygamma function.

    Polygamma(n,x) := df(Psi(z),z,n);

    syntax:

    Polygamma(<integer>,<expression>)

    examples:

    
     Polygamma(1,2); 
    
         2
      (pi   - 6) / 6
    
    
    on rounded; 
    
    Polygamma(1,2.35); 
    
      0.52849689109
    
    

    The Polygamma function is used for simplification of the ZETA function for some arguments.

    Gamma and Related Functions

    REDUC
E

    INDEX

    Gamma and Related Functions

  • POCHHAMMER operator

  • GAMMA operator

  • BETA operator

  • PSI operator

  • POLYGAMMA operator

  • DILOG_extended

    REDUC
E

    INDEX

    DILOG EXTENDED _ _ _ _ _ _ _ _ _ _ _ _ operator

    The package specfn supplies an extended support for the dilog operator which implements the dilog arithm function.

    dilog(x) := - defint(log(t)/(t - 1),t,1,x);

    syntax:

    Dilog(<order>,<expression>)

    examples:

    
    defint(log(t)/(t - 1),t,1,x); 
    
      - dilog (x) 
    
    
    dilog 2; 
    
          2
      - pi  /12 
    
    
    
    on rounded; 
    
    Dilog 20; 
    
      - 5.92783972438
    
    

    The operator Dilog is sometimes called Spence's Integral for n = 2.

    Lambert_W_function

    REDUC
E

    INDEX

    LAMBERT\_W FUNCTION _ _ _ _ _ _ _ _ _ _ _ _ operator

    Lambert's W function is the inverse of the function w * e**w. It is used in the solve package for equations containing exponentials and logarithms.

    syntax:

    Lambert_W(<z>)

    examples:

    
    Lambert_W(-1/e); 
    
      -1 
    
    
    solve(w + log(w),w); 
    
      w=lambert_w(1)
    
    
    on rounded; 
    
    Lambert_W(-0.05); 
    
      - 0.0527059835515
    
    

    The current implementation will compute the principal branch in rounded mode only.

    Miscellaneous Functions

    REDUC
E

    INDEX

    Miscellaneous Functions

  • DILOG extended operator

  • Lambert\_W function operator